Human LDL receptor enhances sequestration of ApoE4 and VLDL remnants on the surface of hepatocytes but not their internalization in mice.

نویسندگان

  • Michael Altenburg
  • Jose Arbones-Mainar
  • Lance Johnson
  • Jennifer Wilder
  • Nobuyo Maeda
چکیده

OBJECTIVE In humans, apolipoprotein (apo) E4 is associated with elevated plasma cholesterol levels and a high risk of developing atherosclerosis, whereas apoE2 is protective. Here we investigate the mechanism by which mice expressing human apoE isoforms recapitulate this association when they also express high levels of human low-density lipoprotein receptor (LDLR). METHODS AND RESULTS Primary hepatocytes from apoE4 mice secreted less apoE into the medium than hepatocytes from apoE2 mice. Increased LDLR expression decreased this secretion and increased degradation of apoE4. An apoE4-GFP fusion protein expressed in the liver of apoE-deficient mice accumulated on the hepatocyte surface bordering the space of Disse in an LDLR-dependent manner. Fluorescence-labeled very low-density lipoprotein (VLDL) remnants accumulated on the hepatocyte surface in apoE4 mice with high LDLR, but they were internalized poorly. In contrast, apoE2-GFP did not accumulate on the hepatocyte surface even when the LDLR expression was high, but apoE2 mice with high LDLR internalized the remnants avidly without sequestering them on the hepatocyte surface. CONCLUSIONS The high affinity of apoE4 to the LDLR enhances VLDL sequestration on the hepatocyte surface but delays their internalization. This delay likely increases VLDL conversion to cholesterol-enriched remnants in apoE4 mice with high LDLR, and probably to LDL in humans with apoE4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI.

LPL activity plays an important role in preceding the VLDL remnant clearance via the three major apolipoprotein E (apoE)-recognizing receptors: the LDL receptor (LDLr), LDL receptor-related protein (LRP), and VLDL receptor (VLDLr). The aim of this study was to determine whether LPL activity is also important for VLDL remnant clearance irrespective of these receptors and to determine the mechani...

متن کامل

Apolipoprotein E4 Exaggerates Diabetic Dyslipidemia and Atherosclerosis in Mice Lacking the LDL Receptor

OBJECTIVE We investigated the differential roles of apolipoprotein E (apoE) isoforms in modulating diabetic dyslipidemia-a potential cause of the increased cardiovascular disease risk of patients with diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced using streptozotocin (STZ) in human apoE3 (E3) or human apoE4 (E4) mice deficient in the LDL receptor (LDLR(-/-)). RESULTS Diabetic E...

متن کامل

Role of low density lipoprotein receptor-dependent and -independent sites in binding and uptake of chylomicron remnants in rat liver.

The role of the low density lipoprotein (LDL) receptor in the binding of chylomicron remnants to liver membranes and in their uptake by hepatocytes was assessed using a monospecific polyclonal antibody to the LDL receptor of the rat liver. The anti-LDL receptor antibody inhibited the binding and uptake of chylomicron remnants and LDL by the poorly differentiated rat hepatoma cell HTC 7288C as c...

متن کامل

Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E.

The plasma clearance of intestinally derived remnant lipoproteins by the liver is a process that likely involves three steps. Our model suggests that the initial rapid clearance by the liver begins with sequestration of the remnants within the space of Disse, where apolipoprotein E secreted by hepatocytes enhances remnant binding and uptake. Heparan sulfate proteoglycans (HSPG), which are also ...

متن کامل

Mathematical modelling of competitive LDL/VLDL binding and uptake by hepatocytes

Elevated levels of low-density-lipoprotein cholesterol (LDL-C) in the plasma are a well-established risk factor for the development of coronary heart disease. Plasma LDL-C levels are in part determined by the rate at which LDL particles are removed from the bloodstream by hepatic uptake. The uptake of LDL by mammalian liver cells occurs mainly via receptor-mediated endocytosis, a process which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2008